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1. Nise, N. S. “Control System Engineering”, 7th edition, John Wiley & Sons Ltd., UK, 2016. 

2. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall, 5th Edition. 

3. F. Golnaraghi and B. C. Kuo, “Automatic control Systems”, 10th ed., John Wiley & Sons, 
Inc. 2017. 

4. Andrea Bacciotti, “Stability and Control of Linear Systems” Volume 185, Springer, 2019 
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➢ Introduction to control systems: Open loop systems, closed loop 

systems, transfer function and concept of poles and zeros. Block 

diagram reduction techniques. Signal flow graph techniques. 

Modeling of some electrical, mechanical and thermal systems. 

Time response of first and second order systems, PID controllers. 

Steady-state error. Concept of stability: Routh’s stability criterion. 

➢ Root locus method. State- space representation: State model of 

linear systems using physical variables, State, space 

representation using phase variables. Properties of transition 

matrix and solution of state equation. compensation. Programable 

Logic Control (PLC).

Course Description
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Control Systems Design 
Using Root-locus 

Approach
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Control Design Using Root Locus

• Case study: double integrator, transfer function 𝐺𝑠=
1

𝑠2

• Control objective: ensure stability, meet time response
specifications.

• First, let’s try a simple P-gain:

• Closed-loop transfer function:
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Double Integrator with P-Gain

▪ Closed-loop transfer function:

▪ Characteristic equation: 𝑠2 + 𝐾 = 0

▪ Closed-loop poles: 𝑠 = ±𝑗√k
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This confirms what we already knew: P-gain alone does not deliver 
stability.



Double Integrator with PD-Control 
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▪ Characteristic equation:

▪ To use the Root-Locus method, we need to convert it 

into the Evans form 1 + 𝐾𝐿(𝑠) = 0, where 𝐿(𝑠) =
𝑏(𝑠)

𝑎(𝑠)



▪ But let’s actually draw the RootLocus using the rules:

▪ What can we conclude from this root locus about
stabilization?

➢ all closed-loop poles are in LHP (we already knew this
from Routh, but now can visualize).

➢ nice damping, so can meet reasonable specifications.
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So, the effect of D-gain was to introduce an open-loop zero into
LHP, and this zero “pulled” the root locus into LHP, thus
stabilizing the system.



Dynamic Compensation

▪ Objectives: stabilize the system and satisfy given
time response specifications using a stable, causal
controller.

▪ Characteristic equation:
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Approximate PD Using Dynamic 
Compensation 

▪ Reminder: we can approximate the D-controller 𝐾𝐷 𝑠
by:

where, p is the pole of the controller.

▪ So, we replace the PD controller 𝐾𝑃 + 𝐾𝐷 𝑠 by:

▪ Closed-loop poles: 1 + (𝐾𝑝 + 𝐾𝐷
𝑃𝑆

𝑆+𝑝
)
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Lead & Lag Compensators
▪ Consider a general controller of the form

▪ Depending on the relative values of z and p, we call it:

➢ a lead compensator when z < p

➢ a lag compensator when z > p

▪ Why the name “lead/lag?”

➢ think frequency response

❖ if 𝑧 < 𝑝, then 𝜓 − 𝜑 > 0 (phase lead).

❖ if 𝑧 > 𝑝, then 𝜓 − 𝜑 < 0 (phase lag).
18



Back to Double Integrator

▪ Controller transfer function is K
𝑠

𝑠+𝑏
, where 

▪ so, as 𝑝 → ∞ , 𝑧 tends to a constant, so we get a lead 
controller.

We use lead controllers as dynamic compensators for 
approximate PD control
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Double Integrator & Lead 
Compensator 

▪ To keep things simple, let’s set 𝐾𝑃= 𝐾𝐷. Then:

▪ Since we can choose p and z directly, let’s take

𝑧 = 1 𝑎𝑛𝑑 𝑝 = 𝑙𝑎𝑟𝑔e.

We expect to get behavior similar to PD control.
20
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▪ Let’s try a few values of p. Here’s p = 10:

▪ Close to jω-axis, this root locus looks similar to the PD root locus.
However, the pole at 𝑠 = − 10 makes the locus look different for s far
into LHP.



▪ The design seems to look good: nice damping, can
meet reasonable specs.

▪ Any concerns with large values of p?

➢ When p is large, we are very close to PD control, so
we run into the same issue: noise amplification.

➢ (This is just intuition for now — we will confirm it
later using frequency-domain methods.)
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Control Design Using Root Locus
▪ Case study: double integrator, transfer function.

𝐺𝑝(s)= 
1

𝑠−1

▪ Control objective: ensure stability and constant
reference tracking.

▪ In earlier lectures, we saw that for perfect steady-state
tracking we need PI control :

▪ Closed-loop poles are determined by the Characteristic
equation:
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▪ To use the Root-Locus method, we need to convert it

into the Evans form 1 + 𝐾𝐿(𝑠) = 0, where 𝐿(𝑠) =
𝑏(𝑠)

𝑎(𝑠)
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Root Locus for PI Compensation

▪ The system is stable for K > 1 (from Routh-Hurwitz).

▪ For very large K, we get a completely damped system,
with negative real poles.

▪ Perfect steady-state tracking of constant
references.
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Approximate PI via Dynamic 
Compensation

▪ PI control achieves the objective of stabilization and
perfect steady state tracking of constant references;
however, just as with PD earlier, we want a stable
controller.

▪ Here’s an idea:

▪ More generally, if 𝑧 =
𝐾1

𝐾
𝑝

, then

▪ This is lag compensation (or lag control).
We use lag controllers as dynamic compensators for approximate PI
control.
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Compensation



Design by Root-Locus Method
▪ The root-locus approach to design is very powerful

when the specifications are given in terms of time-
domain quantities, such as the damping ratio and
undamped natural frequency of the desired dominant
closed-loop poles, maximum overshoot, rise time, and
settling time.

▪ The design by the root-locus method is based on
reshaping the root locus of the system by adding
poles and zeros to the system’s open-loop transfer
function and forcing the root loci to pass through
desired closed-loop poles in the s plane.
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▪ Consider a design problem in which the original
system either is unstable for all values of gain or is
stable but has undesirable transient response
characteristics.

▪ In such a case, the reshaping of the root locus is
necessary in the broad neighborhood of the 𝑗𝜔 axis
and the origin in order that the dominant closed-loop
poles be at desired locations in the complex plane.
This problem may be solved by inserting an
appropriate lead compensator in cascade with the
feed-forward transfer function.
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Series Compensation & Parallel 
Compensation

a) Series Compensation:

a) Parallel or feedback Compensation
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Commonly Used Compensators

▪ Lead Compensator

➢ If a sinusoidal input is applied to the input of a
network, and the steady state output (which is also
sinusoidal) has a phase lead.

▪ Lag Compensator

➢ If a sinusoidal input is applied to the input of a
network, and the steady state output (which is also
sinusoidal) has a phase lag.
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▪ Lead-Lag Compensator

➢ If a sinusoidal input is applied to the input of a
network, and the steady state output (which is also
sinusoidal) has both phase lag and phase lead occur in
the output but in different frequency regions; phase
lag occurs in the low-frequency region and phase lead
occurs in the high-frequency region.
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Effects of the Addition of Poles
▪ The addition of a pole to the open-loop transfer

function has the effect of pulling the root locus to
the right, tending to lower the system’s relative
stability and to slow down the settling of the
response.

(a) Root-locus plot of

a single-pole system.

(b) root-locus plot

of a two-pole system.

(c) root-locus plot

of a three-pole system.
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Effects of the Addition of Zeros
▪ The addition of a zero to the open-loop transfer

function has the effect of pulling the root locus to
the left, tending to make the system more stable and
to speed up the settling of the response. (Physically,
the addition of a zero in the feed-forward transfer
function means the addition of derivative control to
the system. The effect of such control is to
introduce a degree of anticipation into the system
and speed up the transient response.)

34
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(a)Root-locus plot
of a three-pole
system.

(b), (c), and (d)
root-locus plots
showing effects
of addition of a
zero to the
three-pole
system.



Lead or Lag Compensation
▪ The transfer function is

▪ Where:
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▪ This network has a dc gain of

▪ This network is

➢ a lead network if 

➢ a lag network if  
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Lead Compensation Techniques Based 
on the Root-Locus Approach

▪ The designing a lead compensator for the system
shown by the root-locus method may be stated as
follows:

1. From the performance specifications, determine the desired
location for the dominant closed-loop poles.

2. By drawing the root-locus plot of the uncompensated system
(original system), ascertain whether or not the gain adjustment
alone can yield the desired closed-loop poles. If not, calculate
the angle deficiency 𝜑. This angle must be contributed by the
lead compensator if the new root locus is to pass through the
desired locations for the dominant closed-loop poles.
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3. Assume the lead compensator 𝐺𝑐(𝑠) to be

where 𝛼 and 𝑇 are determined from the angle deficiency. 𝐾𝑐 is determined
from the requirement of the open-loop gain.

4. If static error constants are not specified, determine the
location of the pole and zero of the lead compensator so that
the lead compensator will contribute the necessary angle 𝜑. If
no other requirements are imposed on the system, try to make
the value of 𝛼 as large as possible. A larger value of a generally
results in a larger value of 𝐾𝑣 , which is desirable. Note that

5. Determine the value of 𝐾𝑐 of the lead compensator from the
magnitude condition.

39



EXAMPLE
▪ Consider the position control system with the feed-

forward transfer function is:

▪ It is desired to design a lead compensator 𝐺𝑐(𝑠) , so
that the dominant closed-loop poles have the
damping ratio 𝜂 = 0.5 and the undamped natural
frequency 𝜔𝑛 = 3 𝑟𝑎𝑑/𝑠ec.
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Solution

▪ The closed-loop transfer function for the system is:

▪ The closed-loop poles are located at:

➢ The damping ratio of the closed-loop poles is 𝜂 = 0.5.

➢ The undamped natural frequency of

the closed-loop poles is 𝜔𝑛 = 3 𝑟𝑎𝑑/𝑠𝑒𝑐.

Because the damping ratio is small, this

system will have a large overshoot in

the step response and is not desirable.
41



▪ The desired location of the dominant closed-loop
poles can be determined from:

▪ as follows:
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Solution (Method -1)
▪ First, determine the necessary angle 𝜑 to be added

so that the total sum of the angles is equal to ±
180(2𝑘 + 1).

➢ The angle from the pole at the origin to the desired dominant
closed-loop pole at 𝑠 = – 1.5 + 𝑗2.5981 is 120°.The angle from the
pole at 𝑠 =– 1 to the desired closed-loop pole is 100.894°. Hence,
the angle deficiency is:

➢ Thus, if we need to force the root

locus to go through the desired

closed-loop pole, the lead compensator

must contribute 𝜑 = 40.894° at

this point. 43



▪ Then we bisect angle APO and take 40.894°/2 each
side, then the locations of the zero and pole are
found as follows:
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▪ Thus, 𝐺𝑐(𝑠) can be given as:

▪ For this compensator the value of a is α = 1.9432/4.6458 =
0.418.

▪ The value of 𝐾𝑐 can be determined by use of the magnitude
condition.

▪ Hence, the lead compensator 𝐺𝑐(𝑠) just designed is
given by
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▪ the closed-loop transfer function becomes
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Solution (Method -2) 

▪ If we choose the zero of the lead compensator at 𝑠 =
−1 so that it will cancel the plant pole at 𝑠 = −1, then the
compensator pole must be located at 𝑠 = −3.

▪ The value of 𝐾𝑐 can be determined by use of the
magnitude condition.
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▪ Hence, the lead compensator 𝐺𝑐(𝑠) just designed is 
given by
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Lead Compensation Techniques Based 
on the Root-Locus Approach 

▪ The designing a lag compensator for

the system shown by the root locus

method may be stated as follows:

1. Draw the root-locus plot for the uncompensated system whose
open-loop transfer function is 𝐺(𝑠) . Based on the transient-
response specifications, locate the dominant closed-loop poles on
the root locus.

2. Assume the lag compensator 𝐺𝑐(𝑠) to be

49Then the open-loop transfer function of the 
compensated system becomes 𝐺𝑐(𝑠), 𝐺(𝑠).



3. Evaluate the particular static error constant specified in the
problem.

4. Determine the amount of increase in the static error constant
necessary to satisfy the specifications.

5. Determine the pole and zero of the lag compensator that
produce the necessary increase in the particular static error
constant without appreciably altering the original root loci.
(Note that the ratio of the value of gain required in the
specifications and the gain found in the uncompensated system
is the required ratio between the distance of the zero from
the origin and that of the pole from the origin.)

6. Adjust gain 𝐾𝑐 of the compensator from the magnitude
condition so that the dominant closed-loop poles lie at the
desired location.

50



Example
▪ Consider the control system shown. Design a lag

compensator 𝐺𝑐(𝑠) such that the static velocity error
constant 𝑘𝑣 is 50 sec−1 without appreciably changing
the location of the original closed-loop poles, which
are at 𝑠 = − 2 ± 𝑗16.
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Solution
▪ Assume that the transfer function of the lag compensator 

is 

▪ Since 𝑘𝑣 is specified as 50 sec−1 , we have 

▪ Thus 

▪ Now choose              , then  
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▪ Choose 𝑇 = 10. Then the lag compensator can be given by

▪ The angle contribution of the lag compensator at the
closed-loop pole 𝑠= − 2 ± 𝑗16.

▪ which is small. The magnitude of 𝐺𝑐(𝑠) at is 0.981. Hence
the change in the location of the dominant closed-loop
poles is very small.
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▪ The open-loop transfer function of the system becomes

▪ The closed-loop transfer function is
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A unity feedback control system

has: 𝐺 𝑠 =
𝐾 𝑠+1

𝑠 𝑠+20
and𝑟 𝑡 = 1

Find the value of K so that the 

steady-state error does not exceed 

(0.01). With the calculated value of 

K, test the system stability.
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